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An improved method for nearly orthogonal grid generation is presented in this
study. The generating system is based on solution of a system of partial differential
equations with finite difference discretization. To prevent grid lines from collapsing
onto each other, the grid cell aspect ratio is controlled by functions that limit excessive
ratios. Bounding all the aspect ratios is essential for high-quality numerical approxi-
mations using such grid-based methods as finite elements, finite differences, or finite
volumes. The influence of the number of grid points, type of boundary, and intensity
of the grid quality control function and grid properties are investigated. Specification
of both boundary point distribution on all sides and moving boundaries is used. The
proposed method is applied to various test problems from the literature. This method
is shown to provide a good balance between controlling grid orthogonality and cell
aspect ratio. © 2001 Academic Press
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1. INTRODUCTION

To solve partial differential equations posed on spatial domains, a collection of poi
called a grid is imposed on the computational domain. Grid quality is important for mir
mizing computational error. A well-designed grid should be orthogonal. Additionally, fc
isotropic problems, grid aspect ratios near one are important for good conditioning of
discrete operator, as well as for reducing errors in derivatives of the approximate soluti

Orthogonal grid generation is the subject of many studies [3—21]. One of the well-kno
and frequently used ways to obtain orthogonal grids in two dimensions is through confor
mapping. Theoretical foundations of elliptic grid generation owe much to the theory
conformal mappings, which preceded it by several decades. In fact, the main impetus
the development of elliptic methods is the lack of versatility in the construction of conforrn
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maps and inability to control the distribution of grid points in the generated grid [1, 3,
11, 12, 16, 20].

Conformal mapping is restricted to having equal scale factors in all directions, i.e
region of small circles or rectangles remains as circles or rectangles after transformatiol
8, 20]. Therefore, such techniques may perform well with respect to aspect ratio, but n
perform poorly with respect to orthogonality. To improve orthogonality some research
have prescribed scale factors, i.e. the scale factor is not unit but rather some adjust
constant throughout the domain [4, 5]. However, the use of prescribed scale factor
still too restrictive for a generally applicable transformation technique [7, 8, 17, 18, 2
Mobley and Stewart [7] have used a simple increasing function to perform a 1-D stretch
transformation on the region after conformal mapping. In this method, the scale fact
have to be determined.

Ryskinand Leal [8] generalized Mobley and Stewart’s idea to nonconstant scale factor:
proposing the covariant Laplace equations as a generating system for the grid coordinate
this method, constraints on the components of the metric tensor of the curvilinear coordin
are used to achieve orthogonality and to control the spacing of coordinate lines. This met
has been the subject of many articles [9-16, 20]. The main problem in all these methoc
determination of the so-called distortion functiérwhich controls the scale factors.

Albert [9], Allievi and Calisal [10], and Eg [12] used a method in which the distor-
tion function is calculated in the entire domain during nonlinear iterations. The differen
between these approaches is the numerical methods—finite difference or finite eleme
employed by the authors to solve the equation. As statedbyP], for certain geometries
and for some boundary point distributions, the orthogonality constraint becomes too
strictive and one of the scale factors tends to zero. This leads to collapse of grid lines
to an unacceptable grid. In this paper we overcome this deficiency. The distortion funct
is adjusted automatically during the course of numerical solution to reflect the evolvi
gradient of the grid coordinates. To prevent grid lines from approaching each other, r
functions in the form of pseudo-forces are introduced. They help to adjust the scale fac
and therefore control aspect ratios, in addition to the orthogonality constraint. Moreov
prescribing values of the distortion function at the boundaries is explored as a useful t
for resolving boundary layers. Both Dirichlet and Neumann-Dirichlet boundary conditio
on the generating system are examined.

The grid quality obtained through the new method is compared to the grid quality
other methods. Conformal mapping produces grid aspect ratios near one, but with we;
orthogonality. In addition, this method is not robustals method is more robust and results
in better orthogonality. However, it leads to poorer aspect ratios. The examples demons
that the new method is comparable toefs, with respect to orthogonality, and to conformal
mapping with respect to aspect ratio.

2. THE GRID GENERATING SYSTEM

The generating system used by Ryskin and Leal [8] is based on the simple observa
thatx andy as Cartesian coordinates in the physical space are linear functions of positi
Thus,grad(x) andgrad(y) are constant-valued vector fields, and it follows that

V2x =0, V?y=0, (1)

for the two-dimensional case, wheveé is the covariant Laplace operator.
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In the following we will assume summation on repeated indicesgi &te the elements of
the covariant metric tensor of a multidimensional coordinate systeg?, ..., £", which
define the length of an arc according to the relation

ds’ = g;jdg'dg /. 2

If gis the determinant of this tensor aggl are elements of the corresponding contravari
ant tensor, the Laplace operator in curvilinear coordinates can be written as [21]

Taae (vae' i) @)

The development of an appropriate coordinate system must begin by specifying the m¢
tensor, and it is this specification that determines the properties of the resulting coordir
system. For example by setting off-diagonal components to zero, the coordinate sys
becomes orthogonal. There are alwayslegrees of freedom (whera = 2 in 2-D and
m = 3 in 3-D) in choosing the mapping functions [8].

For an orthogonal curvilinear coordinate system, off-diagonal elements of the me
tensor must be zero. Alsg' (contravariant components of metric tensor) are equaldp 1
for orthogonal coordinates. Therefore, Eq. (1) for two dimensional orthogonal curviline
coordinateg andn becomes

0 X d [ 10dx
i (1) +an () =0 )

d ay a (1loay
— | = — (== =0. 4b
85(3E>+8n(fan> )
In the above equationd,(X(&, ), Y(&, n)) is the distortion function which is defined as
the ratio of scale factor in the-direction to that in th&-direction, i.e.,

h,

f=_"
he’

®)

where the scale factors are defined by

nevwm|(5) - ()

e () (3)

Equations (4) have been used extensively for grid generation. The main problem with
variant Laplace operators is their highly nonlinear nature. To linearize (4), some approac
prescribe the distortion function a priori, which causes problems. Since the only constr:
in Egs. (4) is on orthogonality, and if the distortion functidnis restricted to unity, (4)
reduces to conformal mapping. For a 2-D problem, this second restriction is obviou
a major limitation on the class of possible mappings. Indeed, the lack of robustnes:
“stiffness” of the conformal mapping, which makes it ill-suited for our purpose, is due
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this unnecessary restriction. In general, prescribing the distortion function a priori lead:
robustness problems in the generating system.

The difference between the various available methods is the way in which the distort
function f is obtained. Three types of procedures have been proposed:

Method 1: Calculatef from its definition (5) at the boundaries and obtain its values ir
the domain by interpolation or by solving a Laplace equation.

Method 2: Specify a class of admissible functions fathat guarantees the existence of
a unique solution.

Method 3: Calculatg from its definition (5) in the entire domain.

The first method corresponds to the “weak constraint” method of Ryskin and Leal [
Using this method Chikhliwala and Yortsos [13] calculafeat the boundaries and obtained
values off inthe interior using the algebraic interpolation suggested by Ryskin and Leal [
They found that the success of this method in producing orthogonal grids in this case:
primarily attributed to symmetry of the region. Tamamidis and Assanis [18] used Poisso
equation instead of algebraic interpolation in the entire domain, in order to try to cont
grid spacing.

In the second method, used by Duraiswami and Prosperetti [16], Kang and Leal [1
and Oh and Kang [15], the main problem is to define an admissible functioh fascoli
etal [11] showed that iff is a special product of the forrfi(&, n) = ®(£)©(n), and ifh;
is specified at one of the boundaries, then an orthogonal mapping does exist bé&twgen (
and &, y). However, robustness problems can still arise.

The last method was used by Albert [9], Alievi and Calisal [10], awcd B,2]. Albert
used finite difference discretization to solve (4). Alievi and Calisal used a Bubnov—Galer|
procedure to solve (4) and found that it is possible to obtain orthogonal meshes using |
symmetrical and unsymmetrical domains. They stated that the success of the approact
due to the Bubnov—Galerkin procedure rather than calculating the distortion furfidtiom
its definition (5). EEa also calculated the distortion function directly from its definition, bu
used finite difference discretization to solve (4). Although he obtained good results, |
method appears to have some problems. In some geometries and for certain boundary
distributions, the orthogonality constraint in the domain may cause the collapse of sev
grid lines into one, creating convergence difficulties in the algorithm for solving (4). Locall
these regions are characterized by one of the scale factors tending to zero. In addition t
difficulties in obtaining a solution to the generating system, the poor cell aspect ratios of
resulting grid lead to poor quality approximations and ill-conditioning for many numeric
methods for PDE.

To prevent scale factors approaching zero in some part of the dontals, lBethod is
improved in this study by introducing functions that control the scale factors intbathd
n-directions. The two-dimensional grid generation system then takes the following forn

0 axX a (1oax
% <f8.§> + % <f8n> + Px(hé) + Qx(hn) =0, (7a)
0 ay 0 [(1ay _

HereP(h;) andQ(h,) are inhomogeneous source terms that alter the solgkioy) in
such a way as to control favorably the scale fackgrandh,,, and hence the aspect ratio of
the resulting grid.
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P(hg)

FIG.1. P(h:)as afunction ofi;. Force between grid points becomes repulsive when local scale factor is le
than mean scale factor, and attractive when it is greater.

The functions? andQ are defined by
h?
P(hg) =C hg - — 1, (83)
hg

_ h?
Qhy) =c (h,7 - h) : (8b)

n

wherec is a positive so-called force constant. By changing its magnitude, it is possible
change the intensities #fandQ. The mean scale factong andh,, are defined as

= J he d

h = , 9a
5(77) fd§ n=const. ( )

Y f hn d’?

h = ) 9b
n(g) fdn £=const. ( )

The functionsP andQ act like distributed forces proportional to the deviation of the
local scale factors from the mean scale factors. As shown in Fig. 1 the pseudo-force is :
when the local scale factby: is equal to the mean scale fact?gr. It becomes increasingly
negative a$; approaches zero, and increasingly positivbaicreases beyorﬁg.

3. THE DISCRETIZED GRID GENERATING SYSTEM

The PDEs in Eq. (7) are discretized by the finite difference method. For a typical g
point (Fig. 2), settingAé = 1 andAn = 1, we obtain [12]

; <8x> ¢ (8x> N 1 (8x>
iv1/2,j | == — fiyoj | = —
9% /it12) 08 Jicazy fiivn2\00 /4510

1 0
- ( X) + (Pij +(Quij=0 (10a)
ij-1/2

fij_12 \ 31
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FIG. 2. Atypical grid point {, j).

(™) e (®) ()
[ 2] 1= |
98 ) it1)2,] 0 )iy Tij+r2\0n /5 4102

1 0
— 7 (y) + (Py)i,j + (Qyi,j =0. (10b)
i,j-12 \ 91 /i j_1/2

The indices(i, j) refer to the direction§ andn, respectively. The partial derivative &f
with respect t& is given by

X
— = Xi i — Xi—1/2j 11
(8%_)“ i+1/2,] i—1/2,] ( )

and similar expressions apply fg?ﬁ ay andj "y . Expressions foifj; can be found in [12].

Discretized forms of the pseudo forl?ehg) andQ(h,)) can be derived as follows. First,
hg for a grid linej in the& direction, anch,, for a grid linei in then direction (Fig. 2) are
defined in discretized form as

_ 1M
o = g aze)
i—1
1N
Y jj+1
= Nk (12b)

K
[iN

J

where M and N are number of grid lines§r andn-directions, respectively. Scale factors
hg ; andh, , are discretized as

1
hé,'fr =[(Xit1] — %)%+ Vi — Y DA%, (13a)
I =611 =% )2+ Oje — W12, (13b)

where subscripts, j and superscripts i + 1, and so forth, represent node numbers ant
discretized directions, respectively. The discretized forfa ahdQ corresponding to each
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line segment will be

R = o[l T2 /nli e, (143)
P' —Li _ C[hlg, Jll s.,/hlé. ,1|]’ (14b)
1 J+1 _ C[hihjlﬂ hi., h:};JJH}’ (14c)
I =c[hi-th—h2 /hi-ti] (14d)

P andQ are defined ir§- andn-directions. To find their corresponding components ir
x- andy-directions, the following formulas are used:

(22) iLi+1 (2) i1
(Poij + (Quij = F’.IJ'H(;)]—E) + Pii,jfl’i (;:—E>
§ i 3 i
i-1j
) , (15a)

9x i+ X
ji+1 (a_) i—1.j (—)
+Q (h">ij +Q <hn i

NG A A C A
i+ i—Li
(Py)ij + Q)i = B (K) + R ( he >ij

i
ayy\ -1
( n)> . (15b)
i

BN (G
B+ n i—1Lj
+ Qj)] ( h, ) ot Qi.j ( h
i

Because the system of equations defined in (7) is nonlinear, a Picard-like iterative a
rithm is used to solve it numerically:

=

=

4. ITERATIVE ALGORITHM

1. Choose four corner points of the physical domain that serve as the corner points of
grid in computational domain. Calculateandy values of the other boundary grid points
by dividing physical boundaries into equal segments.

2. Determine aninitial approximation for the interior grid points by bilinear interpolatior

3. Calculate the distortion functioh from Egs. (5) and (6).

4. Solve the system of Eqgs. (7) with fixefdvalues calculated in Step 3 using a few
iterations of the SOR method. Calcul&andQ from Egs. (15).

5. Adjust boundary conditions. If Dirichlet boundaries are applied nothing is done. F
sliding (Neumann-Dirichlet) boundaries, relocate boundary nodes to satisfy orthogona

6. Goto Step 3, if convergence criteria on orthogonality and aspect ratios are not satis!

5. APPLICATION AND COMPARISON

The main purpose of the proposed method is to increase the robustness and flexibili
existing orthogonal grid generation methods. It is preferable that a robust method be
in which the distortion function is not prescribed, but rather determined by the doma
However, using this method without pseudo-ford@a(dQ) may result in the collapse of



812 AKCELIK, JARAMAZ, AND GHATTAS

several grid lines onto each other for some domains and for some boundary point distr
tions. This may also cause convergence difficulties and deviations from orthogonality [1
The main impetus for introducing pseudo-forces is to prevent this behavior and to imp
some control on grid spacing.

In this section, some characteristics of the new method are explored, and it is comp:s
with existing ones. Several domains commonly used in the literature are selected as
generation examples. Maximum deviation from orthogonality (MDO), mean deviation fro
orthogonality (ADO), maximum grid aspect ratio (MAR), and mean grid aspect ratio (AAF
defined below, are used to study quality of the resulting grids.

MDO and ADO are calculated from

MDO = max(|90° — 6, j ), (16a)
1]
1 1 i
AD 90 — 6. 16b
= DD 2; JX;U i, (16b)

wheren, andny are the number of grid points in x- and y-directions, respectively, and

0 = arc cos( hg:r? ) . a7
n
MAR and AAR are calculated from
!§|+l hj i+l
MAR = max (max( N h1'7l'1+1 )) (18a)
’ n'l EIJ

1 ny—1ny—1 IE,IJ+1 hil ]J+1
S, — (18b)

T (-2 (ny -2 & z; (h,H+1 h;'fl

The optimal values of MDO and ADO aré,and for MAR and AAR, 1 (for isotropic
PDEs).
Three criteria for convergence are used,

|fn _ fn71| 5
<1075, (19a)
fn
max(|x; — X", [y — vt) < 1078, (19b)
|ADO" —ADO” <108, (19¢)

where superscript refers to iteration number.
The following are chosen as examples:

1. Acircular region (Domain A) is used to study grid characteristics as a function of gr
point density (Fig. 3). Different force constants are used.

2. A concave region (Domain B) is used as the second test case (Fig. 4). The effect
the force constant on grid properties are compared. The effects of specifying the diste
of the first grid point from the boundary are also studied.
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FIG.3. Domain A. Force constants are 0 and 0.1 in Grids a and b, respectively. Specified boundary condit
on all boundaries. Grid points on all boundaries are equidistant.
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FIG. 4. Domain B, limited byx =0, x = 1, y = 0 andy = 0.85+ 0.15 cogry). Force constants are 0 in
Grid a, 0.01 in Grid b, and 0.11 in Grids ¢ and d. Specified boundary conditions in all boundaries. In Gric
distances to first grid points are specified on all the boundaries. Grid points on the bourdar®®y = 0, and
y = 1 are equidistant; on the top= &.
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FIG.5. Domain C limited by linex =0,x =1,y =0,y = 0.8+ 0.2cogry). In Grid a, specified bound-
aries are used on all boundaries. In Grid b, sliding boundaries are used on the bottom. Distances betweel
points are equal along= 0, y = 0, andy = 1. On the topx = &. Force constants are 0.01.

3. A concave region (Domain C) similar to domain B but with higher curvature is use
as the third test case (Figs. 5 and 6). Both the effects of the force constant and diffe
boundary conditions are examined.

4. Aregion between two half circles (Domain D) is used as the fourth test case (Figs
and 8). As in the third test case, the effects of using different boundary conditions and fo
constants are compared.

5. Domain E (Fig. 9) is a region limited by the coordinate axes and §nesl and
x = 1/2+ 1/6 cogry). As in the third test case, the effects of using different boundar
conditions and force constants are compared.

FIG.6. Domain C. In Grid a, sliding boundaries are used on the bottom; in Grid b sliding boundaries are u:
both at the bottom and top. Equidistant distribution of grid points on the bounda#€8, y = 0 andy = 1. At
the top sidex = &. Force constants are 0.11.
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FIG. 7. Domain D, force constants are 0.001 for Grid a and 0.1 for Grid b. Specified boundaries on all sic
Grid points on all boundaries are equidistant.
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FIG. 8. Domain D, for both grids, force constants are 0.1. In Grid a, specified boundary conditions are us
In Grid b, sliding boundaries are used for circular sides, specified boundaries are used on the other sides. Dist

between grid points are equal along all specified boundaries.
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FIG.9. Domain E, limited by linex = 0,x = 1,y = 0 andx = 1/2 + 1/6 cogxy). Sliding boundaries are
used for the three straight sides in Grid a and c, while specified boundaries are used on the other sides.
constants are 0 for Grid a, 0.01 for Grid b and c. Along the specified boundaries, grid points are equidistant, v

at the left sidey = &.
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il

FIG.10. DomainF, limited by four half-circles on the edges of a unit square. Specified boundaries on all sid
Force constants are 0 and 0.01 in Grids a and b, respectively. Distances between grid points along the boun
are equal.

6. Domain F (Fig. 10) is constructed by four half-circles around a unit square. Grids
generated with and without force constants and results are compared.

The effects of different force constants and grid point density are investigated us
domain A. Results are shown in Figs 11, 12 and 13. Changes of ADO and MDO are shc
as functions of grid density (grid points per direction) in Fig. 11. Both MDO and ADC
decrease with increasing grid density. In Fig. 12, ADO of grids with different node numbe
and force constants are plotted. As expected, with increasing force constant ADO incree
However, the best grid in terms of orthogonality is obtained with a force constant of 0.(
instead of zero. Another characteristic of the method is that, as the force constant incree
the mean aspect ratio AAR decreases, as shown in Fig. 13. The method starts to rese
conformal mapping. This can be seen in terms of mean deviation from orthogonality AL

ADO, MDO
(degrees) \
4 L

- —

5 10 15 20 25 30
Grid Points per Direction

FIG. 11. Maximum and mean deviations from orthogonality (MDO and ADO) with force constan.01
for Domain A.
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ADO conformal mapping
(degrees) 12}

10}

Grid Points per Direction

FIG. 12. Mean deviation from orthogonality (ADO) with different force constants for Domain A.

and mean aspectratio AAR in Figs. 12 and 13. Overall, the number of convergence iterat
decreases as the force constant increases.

Domain B is tested for four different situations (Figs. 4a, 4b, 4c, and 4d). In Grid 4
specified (Dirichlet) boundary conditions are used with zero force constant. Grids 4b
4d are similar to Grid 4a, but with force constants of 0.01 and 0.11, respectively. In G
4c, the force constant is 0.11 and the distance of the first grid point from the boundar
specified on all the boundaries. Grids arex441 for these four test cases. Results are give
in Table I. Similar observations as for domain A can be deduced.

Domain C is used by Oh and Kang [15]. Grids obtained with both specified boundar
and with sliding (Neumann-Dirichlet) boundaries on the bottom are shown in Figs. 5a ¢
5b. The force constants are 0.01 for both cases. The effects of using sliding bounde
only on the bottom (Grid 6a) are compared with sliding boundaries both on the bott
and top (Grid 6b). Force constants are taken as 0.11 for both these cases. Results ¢
seen in Table |. For this domain, grid properties (MDO, ADO, MAR, AAR) as function

c=0
2.2
¢c=10.01
AAR 5 : 20 25
1.8 c=0.1
1.6 c=03
c=0.6
1.4
1.2 conformal mapping

Grid Points per Direction

FIG. 13. Mean aspect ratio (AAR) with different force constants for Domain A.
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TABLE |
Results for Selected Domain

Domain  Figure Grid Force constantc  MDO ADO MAR AAR

A 3a 17x 17 0.00 6.94 0.57 3.34 2.18
3b 17x 17 0.10 6.94 15 2.92 1.69
B 4a 41x 41 0.00 2.26 0.07 N.A. N.A.
4b 41x 41 0.01 0.34 0.08 7.3 1.88
4c 41x 41 0.11 19.28 0.74 5.48 1.78
4d 41x 41 0.11 11 0.49 4.84 1.75
C 5a 21x 21 0.01 1.68 0.42 12.43 2.73
5b 21x 21 0.01 1.81 0.31 10.29 2.64
6a 21x 21 0.11 3.32 121 6.71 2.25
6b 21x 21 0.11 11.65 1.09 9.12 1.72
D 7a 11x 11 0.001 30.18 6.96 127.64 21.74
7b 11x 11 0.1 39.09 12.88 9.01 3.6
8a 41x 41 0.1 33.00 2.64 34.52 5.05
8b 41x 41 0.1 1.02 0.35 7.66 3.44
E 9b 41x 41 0.01 3.62 0.92 22.3 3.4
9c 41x 41 0.01 0.5 0.04 6.13 2.26
F 10b 41x 41 0.01 23.96 0.62 14.82 4.2

of force constant are also plotted. Figures 14a and 15a display the case with spec
boundaries on all sides. Figures 14b and 15b show grids with specified boundaries at t
sides and a sliding boundary on the bottom. For this domain, introducing a small fo
constant decreases maximum and mean deviation from orthogonality. Another observe
from Figs. 14 and 15 is that, although the type of boundary condition does not affect ML

: s 2 L s L L L | 0 L L s L L L L L s ‘
0 002 004 006 008 [A] 012 014 016 018 02 0 002 004 006 008 01 012 01 016 018 02

Force constant Force constant

FIG. 14. Maximum deviation from orthogonality (MDO) and mean deviation from orthogonality (ADO)
as functions of the force constant for domain C with>221 grid. In Fig. 14a, specified boundary grid point
distribution on all boundaries; in Fig. 14b, sliding boundaries used ajoad.
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FIG. 15. Maximum aspect ratio (MAR) and mean aspect ratio (AAR) as functions of the force constant
domain C with 21x 21 grid. Same boundary conditions as in Fig. 14.

and ADO, maximum and mean aspect ratios decrease when a moving boundary is
Therefore, for this domain, using moving boundaries improves grid quality in terms
aspect ratios.

Test cases using Domain D are illustrated in Figs. 7 and 8. In 7a and ®113rids are
used. In 8a and 8b, 4% 41 grids are used. Force constants are 0.001 for Grid 7a, and
for Grids 7b, 8a and 8b. In Grids 7a, 7b, and 8a, specified boundaries are used on all s
In Grid 8b, sliding boundaries are used for circular sides and specified at all other sic
Results are shown in Table I. Although mean deviation from orthogonality increases w
the force constant, maximum and mean aspect ratios decrease. This is shown in Grids 7
7b. MAR and AAR tend to infinity as the force constant approaches zero. Figure 8 illustra
that introduction of Neumann-Dirichlet boundary conditions improves grid quality for th
domain.

For Domain E, three different test cases are considered. In Grid 9b specified boundz
are imposed while for Grids 9a and 9c sliding boundaries are used. Force constants :
for Grid 9a and 0.01 for Grids 9b and 9c. Grid 9a does not satisfy the convergence crite
Results are shown in Table I. Figure 9a shows that although the use of sliding bounde
improves grid quality without the use of a force constant, grid lines still collapse onto ec
other.

Domain F involves two cases. In Grid 10a, the force constant is taken as 0. It is obsel
that grid lines collapse onto each other. This causes convergence difficulties as well a
unacceptable grid, MAR and AAR approach infinity. In Fig. 10b, a grid is generated for t
same domain but with a force constant of 0.01. This eliminates problems with aspect ra
and convergence. Results can be seen in Table I.

Finally, the total number of iterations for convergence is examined as a function of fo
constant. The number of iterations for convergence decreases with increasing force fact
all grid generation examples. By increasing force constant, the generating system becc
better posed. Numerical evidence is shown in Fig. 16 for domain A. Here a4l grid
is used with specified boundary conditions.
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FIG. 16. Number of iterations as a function of force constant for domain A with44l grid. Specified
boundary grid point distribution on all the boundaries.

6. DISCUSSION AND CONCLUSION

The covariant Laplace operator is frequently used in orthogonal grid generation, with
aim of producing a robust and efficient grid generation algorithm. The method proposed
studied here also uses the covariant Laplace operator. It has several advantages com
to previous methods. Since specification of the distortion function is not required, and
distortion function is instead determined by the domain, the method is more effective ¢
robust. Moreover, it does not suffer the problem of grid lines collapsing onto each othel

The proposed method generates grids having properties between conformal mapping
Eca’s method. As the force constant increases, the method resembles conformal map
For zero force constant, the method is identical ta’& method. The latter and similar
methods can, for certain domains, produce grids in which the grid lines collapse onto e
other, especially when sliding (Neumann-Dirichlet) boundary conditions are used. T
was seen in several of the examples. In the proposed method, this problem is elimin
by the introduction of repulsive/attractive force between grid points. Conformal mappi
suffers from insufficient robustness and adaptability to boundary conditions. The propo
method generates a grid that incorporates advantages of both approaches. Selection:
force constant allows tuning the grid properties and choosing the relative importance of ¢
orthogonality and aspect ratio. By preventing the collapse of grid lines onto one anott
convergence problems exhibited by previous methods are avoided. It is found that
number of iterations for convergence decreases as the force factor increases. Moreowv:
the force constant increases, the mean deviation from orthogonality increases also. In <
cases, introducing a small amount of force decreases mean deviation from orthogonality
the other hand, the mean aspect ratio decreases with increasing force. In the implement
of the method, the force constant can be interactively changed, so that grid properties
be adjusted according to the domain. In this study, the force constant is fixed to the s:
value throughout the domain. There are no restrictions on its distribution, however, and
force constant can be tailored to specific domains by varying it over the grid.
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The application of the method to certain difficult domains showed that using slidir

boundaries increases the method’s adaptability to boundary conditions considerably. F
ever, using such boundaries in some domains may cause accumulation of grid point
portions of the boundary. For this reason it may not be possible to use sliding bounda

fo
th

r some domains. To prevent accumulation on the boundaries, controlling forces simila
ose applied to the interior grid points can be applied to the boundary nodes. Using slic

boundaries enables boundary grid points to arrange themselves according to orthogor
characteristics of the domain.

[N
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